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SUMMARY

Soft landing of a payload with the aid of a retraction device is an important aspect in cargo parachute
operations. Accurate simulation of this class of parachute operations with a computer model that takes
into account the �uid–structure interactions involved would complement drop tests and support the
design of cargo parachute systems. We describe the computational methods developed for this purpose,
demonstrate how the computational model works in investigation of di�erent soft-landing conditions,
and show a good correlation between the data from our simulations and drop tests. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

For many airdrop applications, payloads must be delivered at su�ciently high descent speeds
to reduce vulnerability from enemy �re and to minimize drop-zone dispersion. Yet the land-
ing has to be soft enough to prevent harm to the payload. These requirements motivate the
development of parachute retraction systems, which provide one solution to soft-landing re-
quirements. In these systems, a retraction device, such as a pneumatic muscle or mechanical
retractor actuator, is placed between the parachute suspension lines and the payload. This
causes a rapid contraction at landing, resulting in reduced impact. During and immediately
after retraction the performance of a parachute is strongly in�uenced by �uid–structure inter-
actions that play an important role in parachute systems dynamics. In this paper, we describe
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our parachute �uid–structure interaction modelling techniques and the special considerations
for parachute soft-landing applications. Our simulations focus on soft-landing �uid–structure
interactions of a single, round parachute. The retraction is represented by a set of control-line
inputs, which are accounted for within the structural dynamics part of our coupled �uid–
structure interaction model.
These simulations, in addition to providing preliminary results for a class of parachute

�uid–structure interactions, show how the computational methods described can be used for
parachute applications in general. The interaction between the parachute canopy and the sur-
rounding �ow �eld is an essential component of a realistic parachute simulation, and thus
the ability to predict parachute �uid–structure interactions is recognized as an important chal-
lenge within the parachute research community [1, 2]. Our computational methods have been
developed to address a variety of challenges in the modelling of parachute �uid–structure
interactions and other �uid–structure interactions involving large displacements [3, 4]. These
methods have been tested on a number of parachute applications, including descent character-
istics of single, round parachutes [3, 4], cross parachutes [5], interactions between parachute
canopies [6], and the response of round parachutes to control-line inputs [7]. Future stud-
ies will continue to focus on the �uid–structure interactions involved at various stages of
parachute systems, from initial deployment to landing and for single and clustered parachute
systems.
For all simulations described in this paper, the parachutes are operating at su�ciently

low speeds, and, therefore, the aerodynamics is governed by the Navier–Stokes equations
of incompressible �ows. In �uid–structure interactions, because the canopies undergo shape
changes, the spatial domain occupied by the �uid is varying (i.e. deforming) with respect to
time. Therefore we use the deforming-spatial-domain=stabilized space–time (DSD=SST) for-
mulation [8], which was developed for �ow problems with moving boundaries and interfaces.
The parachute is represented as a structure consisting of membranes, cables, and concentrated
masses. The membranes and cables experience large displacements and rotation, but relatively
small strains. Hence, we use a total Lagrangian formulation for the structure, with linear
constitutive relationships for the membranes and cables [9].
We describe the computational model in Section 2. In Section 2.1, we provide the governing

equations for the �uid dynamics and describe the DSD=SST formulation. In Section 2.2, we
provide the governing equations for the cable–membrane structural dynamics and describe the
�nite element formulation used. In Section 2.3, we describe our mesh update methods that
handle the mesh as the spatial domain occupied by the �uid changes its shape while the
structure moves and deforms. Simulations for soft-landing retractions of a round parachute
under a number of landing conditions are presented in Section 3. In Section 3.1, we investigate
the in�uence of di�erent retraction rates on soft-landing behaviour of a T–10 parachute. In
Section 3.2, we compare, for soft landing of a T–10 parachute, data from our simulations to
available data from drop tests. Concluding remarks are provided in Section 4.

2. COMPUTATIONAL MODEL

The computational model consists of three parts: a �uid dynamics solver, a structural dynamics
solver, and a linear elasticity solver for automatic mesh moving. In our current implementation
the �uid–structure coupling is achieved with an iterative technique. In this technique, the
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exchange of �uid force and structural displacement data between the �uid and structure takes
place within the non-linear iteration loop of each time step. Multiple non-linear iterations
are carried out to improve the convergence of the coupled system. Implicit time-integration
methods are used for both the �uid and structural parts. For cases where non-matching meshes
are used to represent the �uid and structure at the interface, the �uid force and displacement
data is exchanged by using least-squares projection.

2.1. Fluid dynamics

Let �t ⊂Rnsd be the spatial �uid mechanics domain with boundary �t at time t ∈ (0; T ), where
the subscript t indicates the time-dependence of the spatial domain and its boundary. The
Navier–Stokes equations of incompressible �ows can be written on �t and ∀t ∈ (0; T ) as

�
(
@u
@t
+ u ·∇u − f

)
− ∇ · �=0 (1)

∇ · u=0 (2)

where �, u and f are the density, velocity and the external force, respectively. The stress
tensor � is de�ned as

�(p; u)= − pI+ 2�U(u) (3)

Here p, I and � are the pressure, identity tensor and the viscosity, respectively. The strain
rate tensor is de�ned as

U(u)= 1
2
((∇u) + (∇u)T) (4)

Both Dirichlet- and Neumann-type boundary conditions are accounted for

u= g on (�t)g; n · �= h on (�t)h (5)

Here (�t)g and (�t)h are complementary subsets of the boundary �t , n is the unit normal
vector at the boundary, and g and h are given functions. A divergence-free velocity �eld is
speci�ed as the initial condition.
In the DSD=SST method the �nite element formulation of the governing equations is writ-

ten over a sequence of N space–time slabs Qn, where Qn is the slice of the space–time
domain between the time levels tn and tn+1. At each time step, the integrations involved
in the �nite element formulation are performed over Qn. The space–time �nite element in-
terpolation functions are continuous within a space–time slab, but discontinuous from one
space–time slab to another. The notation (·)−n and (·)+n denotes the function values at tn as
approached from below and above. Each Qn is decomposed into space–time elements Qen,
where e=1; 2; : : : ; (nel)n. The subscript n used with nel is to account for the general case in
which the number of space–time elements may change from one space–time slab to another.
The Dirichlet- and Neumann-type boundary conditions are enforced over (Pn)g and (Pn)h, the
complementary subsets of the lateral boundary of the space–time slab. The �nite element
trial function spaces (Sh

u )n for velocity and (S
h
p )n for pressure, and the test function spaces

(Vh
u )n and (V

h
p )n=(S

h
p )n are de�ned by using, over Qn, �rst-order polynomials in both space
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and time. The DSD/SST formulation is written as follows: given (uh)−n , �nd uh ∈ (Sh
u )n and

ph ∈ (Sh
p )n such that ∀wh ∈ (Vh

u )n and q
h ∈ (Vh

p )n:

∫
Qn
wh ·�

(
@uh

@t
+ uh ·∇uh − fh

)
dQ +

∫
Qn
U(wh) : �(ph; uh) dQ

−
∫
(Pn)h

wh · hh dP +
∫
Qn
qh∇ · uh dQ +

∫
�n
(wh)+n ·�((uh)+n − (uh)−n ) d�

+
(nel)n∑
e=1

∫
Qen

1
�

[
�SUPG�

(
@wh

@t
+ uh ·∇wh

)
+ �PSPG∇qh

]
:

[
�

(
@uh

@t
+ uh ·∇uh

)
− ∇ ·�(ph; uh)− �fh

]
dQ

+
nel∑
e=1

∫
Qen

�LSIC∇ ·wh�∇ · uh dQ=0 (6)

where �SUPG (streamline-upwind=Petrov–Galerkin), �PSPG (pressure-stabilizing=Petrov–Galerkin),
and �LSIC (least-squares on incompressibility constraint) are the stabilization parameters (see
Reference [10]). This formulation is applied to all space–time slabs Q0; Q1; Q2; : : : ;
QN−1, starting with (uh)−0 = u0. For an earlier, detailed reference on this stabilized formu-
lation see Reference [8]. The SUPG and PSPG formulations were introduced in References
[8, 11], respectively. An earlier version of the pressure-stabilizing formulation for Stokes �ows
was reported in Reference [12]. The stabilized space–time formulations were used earlier by
other researchers to solve problems with �xed spatial domains (see for example Reference
[13]).

2.2. Structural dynamics

Let �st ⊂Rnxd be the spatial domain bounded by �st , where nxd=2 for membranes and nxd=1
for cables. The boundary �st is composed of (�

s
t )g and (�

s
t )h. Here, the superscript ‘s’ corre-

sponds to the structure. The equations of motion for the structural system are:

�s
(
d2y
dt2

+ �
dy
dt

− f s
)

− ∇ · �s= 0 (7)

where, y is the displacement, �s is the material density, f s are the external body forces, �s
is the Cauchy stress tensor, and � is the mass-proportional damping coe�cient. The damp-
ing provides additional stability and may be used for problems where time-accuracy is not
important.
In our numerical method, a Lagrangian formulation of the problem is used. Thus, stresses

are expressed in terms of the 2nd Piola–Kircho� stress tensor S, which is related to the Cauchy
stress tensor through a kinematic transformation. Under the assumption of large displacements
and rotations, small strains, and no material damping, the membranes and cables are treated
as Hookean materials with linear elastic properties. For membranes, under the assumption of
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plane stress, S becomes

Sij=( ��mGijGkl + �m[GilGjk +GikGjl])Ekl (8)

where for the case of isotropic plane stress

��m=
2�m�m

(�m + 2�m)
(9)

Here, Ekl are the components of the Cauchy–Green strain tensor, Gij are the components of the
contravariant metric tensor in the original con�guration, and �m and �m are Lam�e constants.
For cables, under the assumption of uniaxial tension, S becomes

S11 =EcG11G11E11 (10)

where Ec is the cable Young’s modulus. To account for sti�ness-proportional material damp-
ing, the Hookean stress–strain relationships de�ned by Equations (8) and (10) are modi�ed,
and Ekl is replaced by Êkl, where

Êkl=Ekl + �Ėkl (11)

Here, � is the sti�ness proportional damping coe�cient and Ėkl is the time derivative of Ekl.
The semi-discrete �nite element formulation for the structural dynamics is based on the

principle of virtual work:

∫
�s0

�s
d2yh

dt2
·whd�s +

∫
�s0

��s
dyh

dt
·wh d�s

+
∫
�s0

Sh : �E(wh) d�s=
∫
�st

(t+ �sf s) ·wh d�s (12)

Here the weighting function wh is also the virtual displacement. The air pressure force on
the canopy surface is represented by vector t. The pressure term is geometrically non-linear
and thus increases the overall non-linearity of the formulation. The left-hand side terms of
Equation (12) are referred to in the original con�guration and the right-hand side terms for
the deformed con�guration at time t.
Upon discretization using appropriate function spaces, a non-linear system of equations is

obtained at each time step. In solving that non-linear system with an iterative method, we use
the following incremental form:[

M
		t2

+
(1− 
)�C
		t

+ (1− 
)K
]
	di=Ri (13)

where

C= �M+ �K (14)

Here M is the mass matrix, K is the consistent tangent matrix associated with the internal
elastic forces, C is a damping matrix, Ri is the residual vector at the ith iteration, and 	di
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is the ith increment in the nodal displacements vector d. The damping matrix C is used only
in stand-alone structural mechanics computations while establishing an in�ated canopy shape
as the starting shape for the �uid–structure interaction computations. In Equation (13), all
of the terms known from the previous iteration are lumped into the residual vector Ri. The
parameters 
; 	; � are part of the Hilber–Hughes–Taylor [14] scheme, which is used here for
time-integration.

2.2.1. Special modelling considerations

1. Time-dependent cable properties: In the simulations presented in this paper, a soft-
landing mechanism is represented as a single control-line input. The retraction device is
modelled with a set of cables that shrink in time. This is accomplished by decreasing,
over the duration of retraction, the cable reference length based on which the cable
stresses are de�ned. The inertia terms, however, are always based on the initial reference
lengths.

2. Augmented-mass stabilization: The iterative coupling technique used in our current im-
plementation amounts to an approximate Newton–Raphson method, where the matrix
blocks representing the coupling between the �uid and structural mechanics systems
are not accounted for in the left-hand side matrix. Because of this, in �uid–structure
interaction computations where the structure is light, structural response becomes very
sensitive to small changes in the �uid dynamics forces and convergence becomes di�cult
to achieve.
A number of approaches can be taken to deal with this di�culty. One approach is to
arti�cially increase the inertia of the structure by increasing the �rst term on the left-hand
side of Equation (12). This approach involves extra structural mass in the inertia terms,
but not in the gravitational body force terms. We observed in our computations that,
other than helping with the convergence, this has a very limited a�ect on the overall
structural behaviour, because in the class of problems we are solving the sti�ness terms
are dominant compared to the inertia terms. This approach was taken in the computations
presented in Section 3.2 and also in computations reported in Reference [15].
A better approach would be the mixed method introduced in Reference [16] for the pur-
pose of accounting for the coupling matrix blocks, including those representing the a�ect
of mesh motion. A short cut approach for improving the convergence was introduced in
References [17, 18]. In this short cut approach, it was proposed to arti�cially increase
the structural mass contribution to the matrix block corresponding to the structural me-
chanics equations and unknowns to reduce ‘over-correcting’ (i.e. ‘over-incrementing’)
the structural displacements during the coupling iterations. Since this is achieved without
altering the right-hand-side vectors in the non-linear iterations, when the coupling itera-
tions converge, they converge to the solution of the problem with the correct structural
mass. In the context of this paper, this would be equivalent to arti�cially increasing the
matrix M in Equation (13).

2.3. Mesh update method

In general the mesh update could have two components: moving the mesh for as long as it is
possible, and full or partial remeshing (i.e. generating a new set of elements, and sometimes
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also a new set of nodes) when the element distortion becomes too high. In mesh moving
strategies, the only rule the mesh motion needs to follow is that at the moving boundary
or interface the normal velocity of the mesh has to match the normal velocity of the �uid.
Beyond that, the mesh can be moved in any way desired, with the main objective being to
reduce the frequency of remeshing. In 3D simulations, if the remeshing requires calling an
automatic mesh generator, the cost of automatic mesh generation becomes a major reason
for trying to reduce the frequency of remeshing. Furthermore, when we remesh, we need to
project the solution from the old mesh to the new one. This introduces projection errors. Also,
in 3D, the computing time consumed by this projection step is not a trivial one. All these
factors constitute a strong motivation for designing mesh update strategies that minimize the
frequency of remeshing.
In parachute �uid–structure interactions problem geometries are complex and require au-

tomatic methods for mesh generation and mesh update. We use an automatic mesh moving
technique, introduced in Reference [19], where motion of mesh nodes is governed by the
equations of elasticity, and the mesh deformation is handled selectively based on the element
sizes. As boundary condition, motion of the interface nodes is required to match the normal
velocities of the �uid. With the boundary condition satis�ed, motion of the internal nodes
is determined by solving the equations of elasticity. Selective treatment based on element
sizes is attained by altering the way the Jacobian of the transformation from the element
domain to the physical domain is accounted for. The objective is to increase sti�ening of
the smaller elements, which are typically located near solid surfaces and, without selective
treatment, can absorb excessive amounts of the mesh deformation. A more extensive type
of this Jacobian-based sti�ening was presented in Reference [20] by introducing a sti�ening
power that determines the degree by which the smaller elements are rendered sti�er than the
larger ones.

3. SIMULATIONS

The T–10 is a personnel parachute constructed with a 35-ft diameter canopy and 30 suspen-
sion lines each 29.4 ft long. The suspension lines meet at a single con�uence point. A 14-ft
pneumatic muscle actuator (PMA) is modeled with a set of cable elements that connect the
con�uence point and the payload. Figure 1 shows the behaviour of a soft-landing system for
a T–10 parachute and payload. The sequence of photographs were obtained from a test con-
ducted by the US Army at Fort Benning for a soft-landing system designed by Vertigo, Inc
[21]. The soft-landing retraction shown in Figure 1 is employed during the �rst four frames
of the sequence. It is during the post-retraction stages of the soft landing that the strongest
�uid–structure interactions are experienced and canopy collapse can occur. For this reason,
future attention will be given to post-retraction dynamics.

3.1. Preliminary simulations: understanding the dynamics of soft-landing retraction

Successful operation of a soft-landing system requires that three conditions are met. First,
forces exerted by the retraction device on the payload must not exceed some threshold that
will harm the payload. Second, the payload must be decelerated to some acceptable landing
velocity. Third, the payload must touch down during the ‘window of opportunity’ at which the
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Figure 1. Parachute soft-landing sequence (photographs courtesy of
US Army SBCCOM and Vertigo, Inc.).

landing velocity condition is being met. Retraction rates, in their critical role, can determine
whether or not these requirements are met. Three preliminary simulations are carried out for
the soft landing of a T–10 parachute system and focus on the behaviour of the system for
three di�erent retraction rates. In each case, the total parachute system weight is 300 lbf (with
a payload weight of 250 lbf) and is initially descending at approximately 20 ft=s. The PMA
is represented by 10 cable elements and the retraction is modelled by shrinking the cables
during the soft-landing simulation. The shrinking, in the amount of 38%, is accomplished in
the way described in Section 2.2, and with a constant rate of decrease during the retraction
period. In each case, a computation of 400 time steps is carried out prior to initiating the soft
landing. Then, shrinking of the PMA cables are prescribed to simulate the retraction durations
of 0.14 s (200 time steps), 0.21 s (300 time steps), and 0.28 s (400 time steps).
The structural dynamics model is composed of membranes, cables, and a concentrated mass.

The canopy is modeled with 780 biquadratic membrane elements. Linear cable elements are
used to model the suspension lines, radial reinforcements along the canopy, and the PMA
cables. The payload is represented by a single concentrated mass. An in�ated equilibrium
geometry of the parachute structure for a prescribed pressure distribution is �rst obtained with
a stand-alone structural dynamics computation. The equilibrium canopy geometry is used
as the initial condition for the �uid–structure interaction computation. The structural model
for the T–10 parachute system with the PMA, the �uid mesh, and the initial �ow �eld
(pressure) are shown in Figure 2. The �uid meshes used in the computations reported here
have of the order one million tetrahedral elements. From earlier parachute simulations and
re�nement studies [22, 23], we believe that this level of mesh re�nement is su�cient to
resolve the primary �ow features around the parachute. Figure 3 shows, for each case, the
aerodynamic drag experienced by the parachute canopy prior to, during, and immediately after
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Figure 2. Structural model, �uid mesh, and initial �ow �eld (pressure).
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Figure 3. Soft-landing of a T–10 parachute with di�erent retraction rates. Time-history of the drag [7].

the retraction. As expected, the curve with the largest peak drag corresponds to the fastest
retraction. Figure 4 shows, for each case, the vertical positions and velocities of the payload
and con�uence point during the same time interval. The soft-landing behaviour is evident
from the vertical velocity histories of the payload. The velocity plot indicates that minimum
payload velocity is experienced shortly into the post-retraction stage of the operation. For each
of the cases simulated, the retraction results in a negative velocity for the payload shortly after
the retraction has been completed.
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Figure 4. Soft-landing of a T–10 parachute with di�erent retraction rates. Time-history of
the position and velocity of the payload and con�uence point [7].

3.2. Comparison of data from simulations and drop tests

A PMA (with mechanical valve) was drop tested from a tower at Fort Benning, under several
di�erent conditions, using a T–10 parachute. These drop tests were performed for di�erent
payloads and PMA actuation pressures. We consider two of these drop tests. Drop 7 was car-
ried out with a 222-lbf payload and 300-psi actuation pressure. Drop 12 had a 305-lbf payload
and 400-psi actuation pressure. We carried out two simulations for the purpose of comparing
data from the simulations and drop tests. In both cases, the total parachute system weight is
236 lbf (with a payload weight of 222 lbf) and is initially descending at approximately 16 ft=s.
Di�erent retraction lengths are used in the two cases to simulate soft-landing behaviour that is
comparable to the drop tests. Retractions are accomplished in the way described in Section 2.2,
and with a constant rate of decrease during the retraction period of 0.25 s. In Simulation 1
the retraction amount is 5.3 ft (26%), and in Simulation 2 it is 4.4 ft (22%). The canopy
is modelled with 5880 triangular membrane elements. The PMA is modelled with 20 cable
elements.
Figure 5 shows the payload trajectory for Simulation 1, and comparison of payload velocities

from the two simulations and two drop tests. There is a good, general correlation between
the velocities from the simulations and drop tests. We see a closer correlation speci�cally
between Simulation 1 and Drop 7 and between Simulation 2 and Drop 12.

4. CONCLUDING REMARKS

We described the computational methods that form the general framework of our simula-
tion tools for parachute �uid–structure interactions. We also described how these tools can
be extended speci�cally to simulation of the aerodynamics and �uid–structure interactions
associated with the soft landing of a round parachute. We �rst focused on understanding
the dynamics of soft-landing retraction, and investigated the in�uence of di�erent retraction
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Figure 5. Comparison of data from simulations and drop tests. Top: Payload trajectory for Simula-
tion 1 during and immediately after retraction. The straight line is the trajectory that the payload
would have had without the retraction. The parachutes displayed illustrate the deformations of the
canopy and the cables. The length scale used in displaying the parachutes is not the same as it is for
the trajectory graph. Bottom: Payload velocity during and immediately after retraction, obtained from

the two simulations and two drop tests.
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rates on soft-landing performance of a T–10 parachute. We observed that for the payload
the minimum velocities occur early in the post-retraction stage. We also carried out a set of
simulations for the purpose of comparing, for soft landing of a T–10 parachute, data from
our simulations and data from drop tests performed at Fort Benning. We observed a good
correlation between the data from the simulations and drop tests.
It is evident that �uid–structure interactions play a signi�cant role in parachute soft landing.

The simulations presented in this paper demonstrate the utility of our computational models
in investigation of this class of parachute applications. Future studies will include soft-landing
simulations for a variety of cargo applications and more comprehensive investigation of the
post-retraction dynamics of parachute soft landing.
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